Virtual Examples for Text Classification with Support Vector Machines
نویسنده
چکیده
We explore how virtual examples (artificially created examples) improve performance of text classification with Support Vector Machines (SVMs). We propose techniques to create virtual examples for text classification based on the assumption that the category of a document is unchanged even if a small number of words are added or deleted. We evaluate the proposed methods by Reuters-21758 test set collection. Experimental results show virtual examples improve the performance of text classification with SVMs, especially for small training sets.
منابع مشابه
An Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification
Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملUniversit at Dortmund Fachbereich Informatik Lehrstuhl Viii K Unstliche Intelligenz Text Categorization with Support Vector Machines: Learning with Many Relevant Features Text Categorization with Support Vector Machines: Learning with Many Relevant Features
This paper explores the use of Support Vector Machines (SVMs) for learning text classiers from examples. It analyzes the particular properties of learning with text data and identi es, why SVMs are appropriate for this task. Empirical results support the theoretical ndings. SVMs achieve substantial improvements over the currently best performing methods and they behave robustly over a variety o...
متن کامل